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ABSTRACT
Rapid identification of disease causing infectious agents
(pathogens) in patient samples is important to mount effec-
tive responses to potential, or ongoing, disease outbreaks.
New advances in genomic sequencing technologies are en-
abling more effective point-of-care diagnosis – where patient
samples can be analyzed for the detection of pathogen DNA.
However, it has yet to be understood how these technologies
can be applied in the field and under resource constraints
that hinder cloud access for computation. Here we present
EpiMobile, a conceptual model and minimal viable product
(MVP) implementation of a genomics point-of-care work-
flow using mobile devices. EpiMobile enables analyses of
genomic data harvested by a portable genome sequencer
and the distribution of analysis results to local clinical or
healthcare teams as well as national, or global, public health
agencies, whilst considering computational processing and
Internet connectivity resource constraints. Our evaluation
of EpiMobile indicates that it has a minimal resource con-
sumption footprint and is accurate when run of a dataset
with known outcomes. However, we emphasize that the
conceptual and exploratory nature of our work affects to
what extent our results would map to real world settings.
We discuss the utility of EpiMobile through a set of usage
scenarios currently supported by our MVP implementation.
We believe that our work provides an interesting overview of
an exciting and emerging healthcare application context as
well as proposing an interesting implementation of genomics
point-of-care.

CCS Concepts
•Computer systems organization → Special purpose
systems; •Applied computing → Health care infor-
mation systems;

Keywords
Mobile diagnosis system; system design; disease prediction;
outbreak control.
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1. INTRODUCTION
Genomic data has the potential to improve patient diag-

nosis and public health efforts if this data can be obtained
and rapidly analyzed at the time when a clinician is as-
sessing a patient (the point-of-care). However, genomics
point-of-care is not currently a reality. Contemporary pub-
lic health systems rely on the output of laboratory tests to
confirm the diagnosis of a communicable disease, but these
tests have slow turn-around times that introduces diagnosis
delays [19, 33]. Some public health agencies are exploring
the use of high-throughput genome sequencing technologies,
which provide a more rapid turn around with an accuracy
that is comparable, and sometimes even better, than exist-
ing laboratory tests [14, 31]. However, even these genomic
sequencing technologies remain confined to the laboratory,
due to their size and resource demands, and thus are diffi-
cult to apply towards point-of-care applications. It is only
very recently that portable genome sequencing technologies
have been developed. Early publications using the Min-
ION portable sequencer in the field during the 2014-2016
ebola outbreak [32] and the (currently) ongoing Brazillian
zika outbreak [17] have demonstrated the potential of this
technology but have also revealed a number of challenges,
especially unanticipated resources challenges, that remain
to be solved. Looking further into the future, it will be nec-
essary to establish how mobile devices, such as smartphones,
combined with portable sequencing technology could be ef-
fectively leveraged to enable true genomics point-of-care in
a variety of resource availability settings. These resource
constraints can be in the form of computational power, to
Internet connectivity, to battery power, and while these con-
straints are well established by the systems research commu-
nity [34] they are relatively absent considerations from the
bioinformatics community that drives genomic research and
relies on resource intensive compute systems.

Here we present EpiMobile, a conceptual sketch with a
minimal viable product implementation of a mobile device
workflow for genomic point-of-care diagnosis of communica-
ble diseases. We limit the scope of our application context
to diagnostic tasks and simple sharing of analysis results
with local healthcare teams and remote servers of national or
global public health systems. Our implementation speculates
on the diagnostic potential of portable genomic sequencing
devices, namely MinION [24, 5], which weighs only 100g and
its (still conceptual) cousin SmidgION, which is designed to
operate on smartphones [7]. For our research to be appli-
cable to real world genomics point-of-care contexts, EpiMo-
bile must be able to adapt to varying resource constraints in



order to share data effectively with local healthcare teams
and national, or global, public health agencies. Resources
requirements will vary greatly depending on the particular
usage scenario, and a truly generalizable system must be
able to work in the field out in remote geographic regions as
well as in highly resourced hospital settings.

Our work provides two major contributions to the existing
distributed systems and bioinformatics literature:

• Description of an end-to-end system that identifies
pathogens from a patient’s sample during a point-of-
care interaction and shares these results with local
healthcare teams and central public health agencies,
and

• Exploration of cross-layer interactions between data
processing, analysis, and reporting layers in light of
computational power and Internet connectivity re-
source constraints.

The rest of this paper is organized as follows. Section 2
describes the public health application context for our work
and provides a high-level overview of genomics and bioinfor-
matics. Section 3 illustrates the conceptual overview of our
system, with specific implementation details in Section 4.
We conduct benchmarking experiments in Section 5 to assess
resources consumption by our system, and also to demon-
strate its diagnostic performance on dataset for which we
have known the outcomes. Note that in the evaluation we
were not able to run our system on a actual mobile device
because some components necessary to run our application
on a mobile device are not currently complete but will be
in the near future (details in Section 4), thus our discussion
of evaluation results is couched in some speculation of how
our system would perform on a mobile platform. Assump-
tions we made for our conceptual sketches and implemen-
tations are in Section 6. In Section 7 we discuss the utility
of our system through a set of usage scenarios concerning
pathogen identification and local vs global pathogen surveil-
lance. We present related work in Section 8 covering current
field deployed mobile pathogen point-of-care genomics and
surveillance implementations and also other research from
biological and non-biological sensors networks deployed on
mobile phones or other devices. Finally, we summarize our
project and outline future work for EpiMobile system in sec-
tion 9.

2. BACKGROUND
In this section we provide an overview of our application

context, genome sequencing, and bioinformatic analysis. We
assume that the reader may have only passing knowledge of
these subjects, more knowledgeable readers can therefore
safely skip this section (or read it anyway and silently pass
judgment on how we’ve distilled these concepts for our au-
dience).

2.1 Public Health and Clinical Medicine
Healthcare system comprises two domains - clinical

medicine and public health - that have separate aims, but
must work together to improve the health of individuals and
whole populations [1]. Clinical medicine is siloed and con-
sists of specialized practitioners (doctors, nurses, pharma-
cists, technicians) that diagnose and treat a single individ-
ual. Public health, in contrast, performs disease prevention

and control activities that target entire populations, and has
a very diverse group of practitioners (community leaders,
politicians, clinical medicine practitioners). For example,
in an outbreak of a communicable disease, like ebola, pub-
lic health agencies are responsible for containing the spread
of disease and preventing new cases (individuals that be-
come infected), while clinical medicine practitioners treat
sick patients. In practice, the boundaries between the two
domains are fluid, but being aware of these differences and
distinguishing between them is important to appreciate why
technological tools for public health may not be appropriate
or sufficient for clinical medicine, and vice-versa.

Our work emphasizes a public health application context,
and more specifically disease diagnosis (relevant also to clin-
ical practitioners) and surveillance, the practice of collect-
ing information to monitor the spread of disease, the likeli-
hood of an outbreak, and the potential severity of the out-
break [21].

2.2 Genome Sequencing
Genomic sequencing technology refers to the full com-

plement of procedures, platforms (genome sequencing ma-
chines), and analysis tools necessary to convert DNA in bio-
logical matter to a digitized form that is then computation-
ally analyzes. While some manner of genomic sequencing
has existed for decades, it has only been since the mid-2000s,
and notably marked by the completion of the first draft of
the human genome, that so-called high-throughput genome
sequencing technologies (also referred to as Next Genera-
tion Sequencing (NGS)) became available, affordable, and
much faster than their contemporary alternatives [20]. Over
the course of nearly two decades, high-throughput genome
sequencing has begun to supplement traditional laboratory
technologies (for example [31, 18]). This transition toward
high-throughput technologies has made it possible to rapidly
analyze the whole genomes of humans and pathogens (dis-
ease causing microorganisms), and has enabled exciting pos-
sibilities to change public health and clinical practices [13],
including genomics point-of-care applications.However, the
full transition toward high-throughput genomic technologies
is not yet complete, and considerable research is still being
carried out to validate this technology and assess its limits.

2.2.1 MinION and SmidgION
There exist a number of genome sequencing platforms,

each with their own strengths and limitations. Our work
focuses on genome sequencing with a new platform called
MinION [24, 5], and in fact through our work we attempt to
anticipate the utility of a yet-to-be released MinION cousin,
SmigdION [7], which is a genome sequencer built to oper-
ate with mobile phones as opposed to relying on desktop
or laptop computers. The primary differentiators between
MinION (and by extension SmigdION) is the nanopore tech-
nology that, among other things, has enabled the develop-
ment of a truly portable genome sequencer; MinION can fit
in the palm of an adult’s hand, whereas other genome se-
quencers are considerably larger and can only be operated
in specialized laboratories. This allows MinION to be a very
versatile genomics point-of-care device, as was demonstrated
in two field studies using MinION during the West African
ebola [32] and Brazilian zika [17] outbreaks.

Our research seeks to explore how a genomics point-of-
care workflow (Figure 1) that encompasses nanopore tech-



Figure 1 An overview of genomics point-of-care workflow. At a high-level there are five high-level steps to conduct a
genomics point-of-care assessment. The first two steps are preparatory : obtaining a sample (blood, urine, saliva, etc.) from
a patient, and then preparing the sample for analysis by isolating DNA content from other biomolecules in the sample (i.e.
proteins). Following sample preparation is the sequencing step, where the organic biological material becomes a digitized string
of DNA comprising A,C,T,G letters (referring the nucleic acid building blocks of DNA). Note that other types of genomic
biomolecules (RNA) can also be sequenced, but we do not discuss those here. Finally, once the DNA is digitized there is a
bioinformatic analysis step that can yield one of two outcomes: a genomic sequence for a single pathogen, an assessment of all
the organisms in the sample (metagenomics, see Section 2.3.1). Our systems design is focused on ”who’s there?” metagenomics
approach. Figure icons are courtesy of the noun project.

nology could be run on a mobile device and how results can
be shared beyond the device that conducted the analysis.
Our work does not comment on the procedures required to
prepare a biological sample (Figure 1) to be analyzed by
the genome sequencer1. While quality of data from these
portable sequencing technologies do not yet match their
much larger, laboratory confined, counterparts, advances in
the underlying nanopore technologies continue to refine the
data quality [23] to make MinION an important technology
for genomics point-of-care.

2.3 Bioinformatics
The discipline of bioinformatics emerged with the demand

to analyze, interpret, and manage the large amounts of ge-
nomic data that was being produced by high-throughput
genome sequencing platforms. Cross-cutting biology, com-
puter science, and applied statistics, bioinformatics is a di-
verse and rapidly changing discipline. Although there exists
commercially available bioinformatic software, the majority
is open source of varying degrees of quality and levels of
maintenance.

2.3.1 Metagenomics
Metagenomics broadly refers to establishing an inven-

tory or micro-organisms present in an environmental sam-
ple based upon the nucleic acid content recovered from the
sample [37]; in very simplistic terms metagenomics allows re-
searchers to assess “who’s in there” based upon whatever ge-

1This step is typically called library or sample prepa-
ration. We have reason to believe that Oxford
Nanopore (the company that makes MinION and Smid-
gION) will eventually provide an easy to use prep-
kit. Indeed that is what their VolTRAX technol-
ogy (https://nanoporetech.com/products/voltrax) is at-
tempting to do.

nomic material is detectable in the sample. Metagenomics is
in contrast to more traditional methods that target a specific
microorganism, usually through culture techniques (growing
microorganism in lab from patient sample), in an attempt
to reconstruct its genome for further analysis. Although
theoretically possible for a long time, metagenomics is a rel-
atively new area of study within genomics and bioinformatic
research largely due to the challenges of developing compu-
tational methods to classify recoverable genomic content to
some specific organism and the need for reference databases
of organism genomes [38]. It is anticipated that in the future
of medical and public health testing will converge towards
metagenomics, foregoing the so-called culture-based meth-
ods of contemporary laboratory testing.

Our application context uses a metagenomic approach to
attempt to identify whether some pathogen could be de-
tected from a human sample (blood, urine, saliva, etc.). For
example, could it be possible to identify ebola in the blood
sample of a patient suspected to have the disease but who
may not yet be showing symptoms?

3. DESCRIPTION OF THE SYSTEM
In this Section we describe the design decisions underly-

ing EpiMobile as abstractions and data structures. To facil-
itate our description of the end-to-end aspects of our system
we break down EpiMobile’s components into four layers of
abstractions: the device input layer, data processing layer,
application layer, and communication layer. We also de-
scribe the cross layer interactions within EpiMobile. The
concrete implementation of these abstractions is presented
in Section 4.

3.1 Device Input Layer
The device input layer consists of the physical connection



between the sequencing device and mobile device, and the
transmission of data between them. There are many aspects
of this layer that are out of our control as it is defined largely
by the Oxford Nanopore corporation, and as such do not
further describe this layer and refer the reader to Loose et
al. [25].

3.2 Data Processing Layer
The data processing layer takes as input a data file from

the device input layer to be processed by bioinformatic tools.
It is possible to accept a stream of input data from the device
layer, however, we do not yet provide this capacity within
EpiMobile. This layer will analyze the genomic data and at-
tempt to identify organisms that are present in the patient’s
sample by comparing against a reference database stored on
the device. Two sets of tabular analytic results are prepared
by this layer. The first is a table of results that reports the
full complement of organisms (organism table) that were de-
tected in the analysis sample, which will stored in a database
and accessed by the application layer. The second is a table
of results reports only the top-hit (best match) organism,
which is stored in a case table on the device. The case table
records all of the patients a clinician has seen and is used
by the communication layer to transmit results locally and
globally.

There are other functions could be implemented in the
data processing layer that could be fed to the the appli-
cation layer, such as automatically monitoring for poten-
tial outbreaks and generating alerts, suggesting appropriate
treatments, or performing clustering or phylogenetic anal-
ysis on the device, however those functions are outside the
diagnostic scope we constrained ourselves to.

3.3 Application Layer
The application layer is what a user will primarily inter-

act with to begin analysis, view results, and communicate
results. To report results the application layer draws from
the results of the full complement of organisms and currently
only reports the top-hit organism to a user interface. We do
not currently manage conflicts in the event that multiple
pathogens may be present in a patient, for example, many
patients with tuberculosis can also be co-infected with HIV.

3.4 Communication Layer
As previously indicated, EpiMobile must be able to oper-

ate in the environments with very limited Internet connec-
tivity. Therefore the system is designed in such a way that
for the local ”on-spot” operation where Internet connection
is not required. Local data exchange is largely reliant on
human protocol to meet and synchronize case table data
stored on individual devices. Global data exchange, which
we define as sharing data with remote servers, is only done
when there is Internet connection.

3.4.1 Local vs. Global Communication
Local communication. The EpiMobile applications will
store genomic sequences, an organism table, and a case ta-
ble on a mobile device. Genomic sequence files are too large
to pass between, and store redundantly, on multiple mobile
devices, and organism tables provide too much information.
As such, we only exchange case table results as part of local
communication. This is achieved through human protocols
as opposed to automated, gossip based protocols that con-

sume resources ”listening” for nearby devices. The human
protocols rely on clinical teams to meet up and manually
synchronize their devices via the user interface in the appli-
cation layer.

Global communication. Global communication assumes
that a EpiMobile can transmit results to a remote server
through a reliable Internet connection. The remote server
can belong to a national public health agency, like the United
States Centre for Disease Control, or a Global agency such
as the World Health Organization (WHO). EpiMobile will
transmit both genomic sequences and case table results. Re-
call that genomic data is not synced across mobile devices,
and as such a device can only transmit data it has processed.
Case tables, if synchronized at sites without an Internet con-
nection, reflect up-to-date case counts. This allows national
or global agencies to have to levels of resolution on emerging
or evolving outbreak situations: a high resolution view via
genomic data, and a cruder lower resolution view via case
counts.

Outside of putting data onto these remote servers, Epi-
Mobile does not currently anticipate what kind of analyses
public health agencies may perform or expect to fetch data
from these central servers onto mobile device, although we
explore possibilities in our usage scenarios (Section 7) and
Future Work (Section 9.1). However, we do know that these
data types are either currently used by public health agen-
cies of will be used more often in the future [19].

3.4.2 The communication protocol
The system follows an eventual consistency model of com-

munication, which means that each device might hold a dif-
ferent set of samples and sample results and/or samples and
sample results with different states. The following proto-
col allows that eventually, the remote server will have all
samples and samples results:

• Each item in the pair (sample, sample result) after
being analyzed locally is marked as GloballyNotShared ;

• Whenever a device gets Internet connection, it sends
its genomic sequence files and case tables that are
marked GloballyNotShared, and marks them as Glob-
allyShared ;

• Whenever a device connects to a local peer device, it
shares all of its case tables, together with their marks of
GloballyShared or GloballyNotShared. This goes both
ways, i.e. the peer also shares its (marked) sample
results with this device;

• Whenever a device connects to a local peer device, it
updates the peer about their GloballyShared case table
results, this way this peer will not have to redundantly
globally share the sample results that have been glob-
ally shared.

The following scenario might better describe the dynamics
of the protocol: Suppose we have 3 field researchers with 1
device each, let them be N1, N2, and N3. N1 holds samples
[x1, x2], N2 holds pairs [x3, x4], and N3 holds pairs [x5, x6],
all with the respective case table sample results, [rx1 , rx2 ],
and so on, respectively (Figure 2).

• N2 gets Internet and shares its pairs, marking
[x3, x4, rx3rx4 ] all as GloballyShared ;



• N1, N2, and N3 meet and connect to each other;

• N2 shares rx3 and rx4 with N1 and N3 and it also
tells them that [rx3 , rx4 ] have been globally shared;

• N1 sends [rx1 , rx2 ] to N2 and N3. N2 now
holds 2 items that need to be shared: [rx1 , rx2 ],
N3 now holds 6 items that need to be shared:
[x5, x6, rx5 , rx6 , rx1 , rx2 ];

• N3 sends [rx5 , rx6 ] to N1 and N3. N2 now holds
4 items that need to be shared: [rx1 , rx2 , rx5 , rx6 ],
N1 now holds 6 items that need to be shared:
[x1, x2, rx1 , rx2 , rx5 , rx6 ].

• They disconnect from each other and split up;

• N3 gets Internet connection and globally shares
[x5, x6, rx5 , rx6 , rx1 , rx2 ] and marks them as Glob-
allyShared ;

• They get together again and connect to each other,
N3 tells N1 and N2 that the items [rx5 , rx6 , rx1 , rx2 ]
have been shared. Note, that it is not necessary to
inform about the sample genome files (i.e. x5 and x6),
because those are never shared locally due to their file
size ( Section 3.4.1).

• Eventually, N1 gets Internet connection too and shares
the remaining [x1, x2].

• Now, the remote server has all the data.

Figure 2 Communication protocol used by nearby
devices to share their sample results

3.5 Cross Layer Interactions
Collectively the device input, data processing, applica-

tion, and communication layers form, in that order, the end-
to-end components of EpiMobile from obtaining a patient’s
sample to communicating the results locally and globally.

Data is passed sequentially from the device input to the
application layer, however local and global communication
relies on a combination of human protocols and Internet
availability, respectively.

We intentionally did not explore security or privacy proto-
cols that can also serve to facilitate cross-layers interactions
in this implementation. Currently, genomic data is not con-
sidered to be patient identification information because this
data is freely shared online and is publicly accessible via
NCBI (a genomic data repository operated by the United
States National Institutes of Health).

4. IMPLEMENTATION
This section describes the tools, methods and ideas used

in our implementation of the EpiMobile system.

4.1 Software Container
One of the requirements of the system described in section

1, is to be able to run the system across a multitude of mobile
devices. However, it is highly impractical to write a version
of our system adapted for each computer or mobile device.
For this reason, there is a need for a generalized software
container.

Docker [2] is an open-source application container engine
that acts as a software container thus providing an addi-
tional layer of abstraction and alleviating the need to write
different versions of the system, adapting to every device.
We are going to use Docker to build a software container to
make sure that EpiMobile works across different devices and
operating systems.

Docker allows separation of applications from infrastruc-
ture so one can deliver software quickly. With Docker, one
can package and run a software application in an isolated
environment called container. On a given host it is possible
run multiple docker containers due its isolation capability.
Although in some ways they are similar to virtual machines,
containers have a lightweight nature because they run with-
out the extra load of a hypervisor. By using Docker it is
possible to simplify the development flow by encapsulating
the application and its dependencies into Docker contain-
ers; these containers are easy to manipulate and allow the
user to reproduce similar behavior on different underlying
architectures. The most common uses for Docker are: 1)
Consistent delivery of software application; 2) Responsive
deployment and scaling; and 3) Running more workload on
the same hardware

Docker uses a technology called namespaces to provide
the isolated workspace called the container. When you run
a container, Docker creates a set of namespaces for that
container. These namespaces provide a layer of isolation.
Each aspect of a container runs in a separate namespace
and its access is limited to that namespace. Docker Engine
uses namespaces such as the following on Linux:

• The pid namespace: Process isolation (PID: Process
ID);

• The net namespace: Managing network interfaces
(NET: Networking);

• The ipc namespace: Managing access to IPC resources
(IPC: InterProcess Communication);

• The mnt namespace: Managing filesystem mount
points (MNT: Mount);



• The uts namespace: Isolating kernel and version iden-
tifiers. (UTS: Unix Timesharing System).

The main reason why we chose Docker is its acceptance
by the software industry. Docker has become the most pop-
ular container technology, being used by big companies such
as Spotify, Yelp, eBay, Expedia, ING, New Relic, The New
York Times, Oxford University Press, PayPal, Sage, Shopify,
The Washington Post and Uber. We have a positive expe-
rience of using Docker, both from the development side and
from the user side, since Docker makes running applications
easy, even for non-tech savvy people.

4.2 Stack
In our simplistic implementation of the system, we are us-

ing Flask [4], a micro web framework for Python. We have
chosen Python as our main programming language, largely
because among all languages, Python is well known to all
three of the authors; it is also a good enough tool for this
kind of project, especially because it is straightforward to
prototype an application in Python. We are using a Post-
greSQL database to store the results table and user interface
is shown via a browser using HTML, CSS and JavaScript.

4.3 Communication
Our EpiMobile design anticipates that in a real-world ap-

plication a stable Internet connection may not be available,
and therefore we need to minimize the amount of transfer-
able data and find other ways, a mobile device can commu-
nicate with the external world.

Unfortunately, it is impossible to communicate with re-
mote servers without any Internet connection however it is
possible to minimize data transfer to the remote servers as
described in section 3.4. We can however synchronize lo-
cal data with other devices, assuming that those are located
within a limited distance range. Synchronization is feasible
by the means of local networks, mesh networks or Bluetooth.
We leave local and mesh networks for future work, and for
our EpiMobile implementation, we have chosen Bluetooth,
mainly because of its simplicity and availability in every de-
vice. More details on communication is in section 3.4.

4.4 Bioinformatic Analysis
We use Mash [30, 3] for metagenomic analysis (Section 2)

in order to identify pathogens present in patient samples.
While there exist other bioinformatic platforms for metage-
nomic analysis [15], we chose to use mash because of its
small computational resource footprint (reported in depth
in [30]).

At a high-level, mash enables rapid string matching
between some query string (DNA sequence) and dictionary
(reference database). Mash does this by decomposing a
DNA string into a set of kmers (smaller and overlapping
substrings of a pre-specified size) and applying the min-
hash [10] method to each kmer, which are then assembled
into a single sketch. The distances between sketches are
computed according to the Jaccard index [30], where 0
indicates a perfect match and 1 indicates complete dissim-
ilarity. As an output mash will produce an ordered list
of matching organisms (as represented by their genomic
strings), from best match (Jaccard distance closer to 0) to
poorest match, as well as the computed Jaccard distance,
a p-value, and the total number of matching hashes (see
https://mash.readthedocs.io/en/latest/tutorials.html).

The Jaccard distances can also be used to generate clusters
of related organisms, however we do not use this function-
ality in EpiMobile. We use the pre-computed sketch of
a reference database that mash provides, which contains
approximately 54,000 organisms and is only 98 MB in size.
New sketches can be easily added to the reference database
if required without recomputing the entire database sketch.

Within EpiMobile, we run mash using default parameters
with a kmer size of 16 (-k), a minimum of two copies per
kmer (-m; to remove low quality sequences), and a sketch
size of 400 (-s). We report the organism of the top mash hit,
so long as the total number of matching hashes between the
top hit and the query string was greater than 3, otherwise
we report an UNKNOWN status. We arrived at this matching
hash threshold by using an ebola MinION dataset(see Sec-
tion 5) and observing the difference between the top hit and
the subsequent hits in the file. Furthermore, we found that
developing a threshold on the number of matching hashes,
rather than Jaccard distance, improved EpiMobile’s report-
ing accuracy across samples, especially as some samples were
higher quality (generally Jaccard scores closer to 0) than
others.

4.5 Workflow
Here we describe the workflow of EpiMobile to explain

how we divided tasks among several modules and how they
fit together in the entire workflow. We will also discuss
the key communication concept that influenced some of our
design decisions.

SmidgION 

DNA Sample 

Obtain Biological 

Sample 

Sample Prep 

Biological Sample 

Sequence DNA 

Docker container 

Remote Location 

Central Server 

NCBI 

Send genomic data 

Bioinformatics 
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(UDP/TCP 
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Web UI 
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Another mobile device 
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another device’s 
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Figure 3 EpiMobile Implementation. The device input
layer is represented by the biological sample and sequence
DNA components. Data processing and application layers
are contained within the large central Docker container com-
ponent. Lastly the communication layer is represented by
black (local) and red (global) lines leaving from the central
docker container. EpiMobile’s layers are described in Sec-
tion 3.

Figure 3 shows the workflow of EpiMobile. It starts with a
user launching EpiMobile application. Through a user inter-
face, she will then see a dashboard displaying the results for
previously analyzed DNA sequences and the new sequences
that have not been processed yet, summarized in a high-level
table of results (see figure 4). She will interact with the rest



of the system through a user-friendly web interface which is
in turn connected to the Controller, the central module that
connects all parts of the system together.

Upon a user request, the Controller calls the Bioinfor-
matics module that performs genomics analysis on DNA se-
quences received from a MinION device. When analysis of a
particular sequence finishes, the Bioinformatics module re-
turns the result back to the Controller that stores it in a
local Database.

Figure 4 Table of results as shown via EpiMobile
web user interface

Communication module is responsible for data transfer
between the device and a remote server and/or nearby de-
vices. If the Communication module identifies that there is
an internet connection, it will synchronize data with a re-
mote server; in this case, we assume that the server was set
up by the World Health Organization (WHO). The Com-
munication module will synchronize the following:

• Local results table: to let the WHO know what the
doctors working in the field are aware of;

• DNA sequences: for a more thorough and detailed
analysis on specialized hardware and software;

Upon a user request, Communication module will turn
on Bluetooth and synchronize local tables of results with
its nearby devices. This is done for people working in the
field to be able to see a more complete picture of a potential
or ongoing disease outbreak. Communication component of
EpiMobile is described in more detail in section 3.4.

5. EVALUATIONS

5.1 Resource Utilization Analysis
One of the main goals of this project is to propose a sys-

tem that can be easily deployed on any reasonable machine;
to confirm that, we have analyzed the EpiMobile resources
utilization on a simple machine.

The Docker container itself is around 1.5 GB of virtual
size, the blood analysis takes at most 600 MB of memory.
For each patient sample analysis performed, 50K rows are
inserted in the database; this is the output of the mash algo-
rithm. It takes around 700 ms to analyze the patient sample
against the reference database, totalizing 2.2 seconds to re-
turn the patient sample result back to the user, without the
need of any Internet connection.

Figure 5 CPU usage when analyzing a patient sam-
ple

Figure 6 Memory usage when analyzing a patient
sample

Figure 7: Docker container virtual size

5.2 Evaluation of Diagnostic Performance
We use standard diagnostic test descriptive statistics to

evaluate the diagnostic aspects of our system. To derive
these statistics we have created a synthetic dataset and as-
sessed our bioinformatic components (Section 4.4) ability to
correctly identify these organisms.

Evaluation Data. We used a dataset consistent of 20
ebola virus samples collected from patients [32] (available
at: https://github.com/nickloman/ebov) and a collec-
tion of and 6 zika virus samples also collected from pa-
tients(obtained randomly from the following BioProjects:
PRJNA358078 and PRJNA329512). Ebola virus samples
were generated using the MinION platform and Zika Virus
were generated using the Illumina (not portable) sequenc-
ing platform. Different genomic platforms will produce ge-
nomic data of different quality and so-called read length
(Section 2).

Descriptive Statistics and Findings. We calculated the
total number of instances when the EpiMobile system cor-
rectly classified (see Section 4.4) samples within our evalua-
tion dataset. Currently, EpiMobile has 100% accuracy, but



this perhaps more of a reflection of MASH’s performance
rather than EpiMobile’s. A small dataset might also under-
represent the performance and could result in skewed accu-
racy measures.

Applicability to real outbreaks. The data that we used
in our analysis, especially the ebola and zika samples are
representative of data collected, processed, and (genome)
sequenced in the wild during active outbreaks. It is possible
that these samples reflect lower quality sequencing data rel-
ative to what will be possible in the future. That is because
in spite of talents and efforts of the investigators that de-
rived these data, at the time these data were derived (2014
to 2016) MinION was still a relatively new technology. As
such, these early studies were some of the first attempts to
test MinION in the wild and more routine and standardized
use in the future may yield higher quality data for analy-
sis. Even though a synthetic data set is not an equivalent
substitute for a prospective outbreak scenario assessment of
EpiMobile‘s diagnostic capacity, our construction of the syn-
thetic dataset thus offers a reasonable realistic suggestion of
expected performance in future outbreaks.

One way in which our evaluation dataset does not reflect
real sample data is that the authors of the ebola and zika
datasets used sample preparation techniques to target and
extract these organisms genomic data from patient‘s blood
samples [32]. This is not quite a metagenomic approach. If
we had used data that was processed through a truly bioin-
formatic approach, we would except that human DNA in
the sample or pathogens from other chronic conditions (like
HIV-AIDS or tuberculosis) would affect our ability to de-
tect and correctly identify a newer acute pathogen infection.
This means that our method is potentially overly optimistic
relative to truly metagenomics approach.

6. ASSUMPTIONS AND LIMITATIONS
Our intention was to provide a conceptual sketch of the

EpiMobile system and a minimal viable product implemen-
tation, and the validity and robustness of our results reflect
this intention. However, as we are humble and poor grad
students, there were also devices and software to which we
did not have access. We detail those limitations in this sec-
tion.

There are a few assumptions that we made when sketching
the system and writing our implementation of the system:

• Currently we do not possess an access to a MinION de-
vice and therefore we cannot replicate the entire work-
flow of the EpiMobile system. We attempted to obtain,
whenever possible, data files produced by the MinIon
device. Further, since SmidgION is a conceptual prod-
uct, we also cannot speculate on the details of its data
quality or even the timeframe of its public release.

• Currently, Docker is not natively supported on any of
the mobile operating systems, however there has been
some community discussion to support this functional-
ity in the future. It may be possible to run Docker on
a phone is someone wished to hack through the instal-
lation processed, however, there is no official support
yet. Due to this limitation, we assess out software per-
formance on laptops running Unix, OSX and Windows
and extrapolate our results to mobile phones.

• We also assume that once Docker is available for mo-
bile phones, no significant changes will have to be made
to EpiMobile.

7. USAGE SCENARIOS
In this section we describe the primary usage scenarios

that our application supports. However, EpiMobile may be
used for applications that we do not described here and may
be modified to support expanded functionality in the future.
We discuss some of that potential future functionality in
these usage scenarios and broader applications in Section 9.

7.1 Initial Point of Care Diagnosis
Initial point-of-care diagnosis concerns the interaction be-

tween a clinician and the patient they are currently assess-
ing. The main task in this interaction is to identify whether
some underlying pathogen is the cause of a patient’s symp-
toms and, importantly, which pathogen it is. We discuss
two scenarios, one where a pathogen can be identified by
EpiMobile, and another where the device cannot identify a
pathogen. In both scenarios, the clinician will gather a sam-
ple from the patient (blood, urine, salvia, etc.), prepare the
sample for analysis, and use the sequencing device (Smid-
gION, see Section 2.2.1), and finally run the EpiMobile ap-
plication (Figure 8).

7.1.1 When an infectious agent can be identified
In this scenario, the EpiMobile application will provide a

single response for the pathogen detected in the patient’s
sample, for example Zaire Ebola Virus (see Figure 4. If
there is an Internet connection available, the mobile device
will automatically transmit the genomic data to a central
server for further analysis (see Section 7.3). If there is no
Internet connection, the clinician can later co-ordinate her
findings with her team (see Section 7.2). However, and most
importantly, with the results on hand the clinician is able
to make a more precise treatment decision for their patient.
Knowing now that a patient has a potentially deadly and
transmissible disease, the clinician can also initiate broader
public health action to identify individuals that may have
been in contact with the infectious patient and screen them
for the presence of pathogen using EpiMobile. As the clin-
ician sees, screens, and diagnoses more patients, results
stored on her mobile device can make her aware of the num-
ber of patients harboring a specific pathogen. For now, she
can assess on her own whether the number of new cases (in-
dividuals with the pathogen) is alarming, but in the future
it may be possible for EpiMobile to make this assessment
and alert her.

7.1.2 When an infectious agent cannot be identified
In some instances, EpiMobile may return an UNKNOWN re-

sult. This can occur for a number of reasons. One reason is
that the concentration of pathogen genomic content in the
sample is too low to be detected by the SmigdION platform.
This can be remedied to some extent by changing the sam-
ple preparation procedure prior to using SimdgION, but this
may not be easy to do in a clinical setting and as such we do
not consider that a viable course of action. Linked to DNA
content concentration is quality; a just barely sufficient con-
centration for detection may yield very poor quality genomic
data making it difficult to identify an associated pathogen.



Figure 8 Summary of EpiMobile Usage. Currently, when a clinician obtains a patient sample she must send it to a
central laboratory for analysis, which can take days or even weeks, depending upon the pathogen. With EpiMobile a clinician
can get a result in real-time, sharing it with local clincial team members and, if an Internet connection is available, a national
or global public health agency. Figure icons are courtesy of the noun project. EpiMobile icon is SmidgION concept design [7]

The theoretical limits on the devices change as the technol-
ogy improves and with the type of sample collected. As-
suming that there is enough of a DNA concentration for se-
quencing, and the quality is reasonable, another reason that
a sample may not be detected is that the pathogen does not
match one of the approximately 54,000 genomes in the mash
database stored on the mobile device (Section 4.4).

EpiMobile’s current approach is just to report the UNKNOWN
status. If an Internet connection is available, the genomic
content can be sent to the central server and more in depth
analysis can be conducted. If a number of clinicians in a
local area get an UNKNOWN status it is possible to launch an
investigation into the cause.

Future work to handle EpiMobile UNKNOWN status could in-
clude more sophisticated on board quality assessment and,
should DNA content pass quality control, the ability to in-
tegrate the genomic sequence processed by the device into
the MASH database, which would allow for rapid and real
time monitoring of a potentially emerging pathogen.

7.2 Local Co-ordination of Disease Status
EpiMobile’s results are not confined to a single mobile

device and can be shared in the absence of an Internet con-
nection (Section 3.4.1). Clinical teams would specify when
to co-ordinate and synchronize the information on their de-
vices, namely tabular results that summarizes the pathogens
detected on each device. With these summarized results on
hand, the clinicians could discuss the case counts and plan
more intensive public health actions if necessary. For ex-
ample, if clinicians in one region could quickly identify a
spike of Ebola cases, they may initiate more intensive quar-
antine protocols, alert local governments and agencies (with
evidence and case counts on hand), and petition for more
supplies. A clinician that leaves a field site to return to an
area with an Internet connection may also share their stored
tabular data with a central public health agency.

Currently with EpiMobile, local co-ordination of disease
status only passes a simple table data structure between

devices. It may be possible in the future to consider an al-
ternative data structure that allows EpiMobile to facilitate
more efficient sharing of genomic data as well. The local
sharing of genomic data may be very important when new
pathogens emerge for which there are no closely related en-
tries in the mash database.

7.3 Global Co-ordination of Disease Status
When an Internet connection is available, EpiMobile will

transmit the raw genome data analyzed by the mobile de-
vice to the a central server (Section 3.4.1). Here we pre-
sume that the central server belongs to an agency, for ex-
ample the World Health Organization or a national public
health agency, that is capable of analyzing the data more
intensively, and that it is not just simply a storage server.
With the sequenced results on hand, a public health agency
can conduct more in depth phylogenetic and spatio-temporal
analysis to monitor pathogen status nationally or even glob-
ally – analyses that are too intensive to (currently) realisti-
cally perform on a mobile device. Such an approach would
constitute a passive surveillance system, where a limited
amount of data is collected (usually just case counts) [21],
that is used today by public health agencies to monitor dis-
ease – but EpiMobile would provide much faster, nearly real-
time, and more in depth (due to genomic data) monitoring
compared current approaches.

Currently, EpiMobile only incorporates putting the se-
quence information on a central server (although this fea-
ture is not yet full implemented), but in the future it may
be possible to also fetch information from the central server,
for example to validate results, to get updates for the mash
databases or bioinformatic methods, and perhaps even con-
tact specific clinicians directly.

8. RELATED WORK
Real-time or near real-time genomic sequencing. The
MinION platform has been available to researchers as part



of an early access program launched in late 2013 [6] and the
first published studies of its field application were during the
2014-2016 ebola outbreak [32] and the (currently) ongoing
zika outbreak [17]. These studies used a laptop to initially
process data from the MinION sequencer (a step that is not
currently covered in EpiMobile because we cannot access
that software) and would then rely on Internet connectivity
to send and process samples on a cloud-computing service
(see [32] supplemental materials). Comparing only to the
evaluation component of [32] and [17] , EpiMobile attempts
to perform analysis locally on the device as well as share re-
sults in the absence of an Internet connection, which enables
a more rapid turn around time than in [32] and [17]. While
EpiMobile supports a much more limited set of analyses, we
argue that this is reasonable delineation between our more
immediate clinical and public health applications and the
research objectives of [32] and [17]. EpiMobile can be de-
ployed to various laptop devices as well, thanks to our docker
implementation. We found only one other suite of bioinfor-
matics software designed for mobile devices, DNAApp [36],
however it performs very different analytic functions that
could not be used for diagnosis tasks and furthermore does
not discuss data sharing. Outside of the MinIOn sequencing
platform, there is also active research using the much larger,
laboratory confined, sequencing technologies for rapid diag-
nosis, for example with tuberculosis [31] and Staphylococcus
aureus, Clostridium difficile [16], and even rapid testing for
antibiotic resistance genes in pathogens [9]. However, all of
these studies, and many supporting bioinformatic pipelines
not discussed here, rely on either cloud technologies or much
more powerfully resourced compute clusters available to cen-
tralized agencies in predominately wealthy nations. This is
to be expected as this area of research is evolving. How-
ever, this current state of the art also demonstrates the po-
tential of EpiMobile to influence future directions of future
genomics point-of-care work.

Other Biometric Sensors. Outside of genomics point-
of-care, the routine collection, sharing, and analysis of bio-
metric data through sensors, like FitBits or health apps on
smartphones, for personal analytics is a growing application
area. Currently, the most popular systems (pedometer and
activity sensors) store and process much less data than Epi-
Mobile and for potentially unknown health outcome benefits
(reference: the authors personal experiences interacting with
these devices) and as such we do not consider them much
further.

The routine collection of biometric data is also being used
in telemedicine or eHealth applications to provide health-
care services to rural, remote, or impoverished communities
that have limited access to medical resources. Commonly,
these systems will use sensors to collect types of data for a
specific health outcome [39]. In one example authors cre-
ated portable sensors that interfaced with smartphones for
diagnosis sickle cell anemia [26], and while they perform
some complex computations on the device they do not dis-
cuss the sharing of results. In another example sensors data
was synced to a mobile device, a smartphone or laptop, be-
fore being synced to a central medical server [29] – a model
similar to the one used by EpiMobile. Some simpler SMS
based mobile eHealth applications have been used success-
fully in clinical trials to improve health outcomes of patients
with HIV aids [12], and while this eHealth research shows
the benefits of using mobile devices in health applications

this application context differs from EpiMobile because it
focuses more on two-way communication via SMS, and not
more involved gathering and processing of data. We note
that many of these examples focus on a clinical application
and do necessarily consider the broader public health impli-
cations.

One challenge of these many different mobile device ap-
plications for health and medicine is that there is a lack of
standards [39] and perhaps even a lacking common basis of
research literature from which to draw upon. EpiMobile’s
implementation attempted to draw from bioinformatic and
systems research knowledge as well as public health subject
matter expertise to establish the system’s conceptual de-
sign and implementation. Unlike some of the examples of
systems discussed here, we focused much more heavily on
communication of results beyond the analytic device.

Sensor Networks. Sensor network systems, which include
smartphones, are designed to collect information from vari-
ous sources, for example environmental measures like parts
per million of air pollution, tracking wildlife, assessing traf-
fic conditions, and lastly collecting biometric data from hu-
mans. Like EpiMobile the solutions developed for these
sensor networks in various application contexts attempt to
trade-off resource limitations and attempt to balance local
processing on the device, for example the Hyrax [28] and mo-
bileNet [22] or across multiple devices such as MagentOS [8],
with global processing using cloud based services, or even
some hybrid local/global model such as CloneCloud [11].
Compared to these systems, EpiMobile’s implementation is
far simpler, and constrained, in terms of data sharing and
using other mobile devices for computation (although the
system can evolve in the future, see Section 9.1). Finally,
each of these different systems assumes different models (or
topologies) of communication among sensors; whereas some
systems limited communication between sensors as siphon-
ing data through a central node in a star topology, other
topologies support inter-sensor communication over peer-
to-peer or two-tiered network topologies [27]. EpiMobile is
designed to facilitate a peer-to-peer network topology for
transmitting results, but it also sits in an interesting place
among this literature due to the need for rapid turn-around
time and sharing of results both locally and globally in the
presence of network connectivity constraints. Thus, the ap-
plication context of EpiMobile, and our solutions, presents
some interesting constraints and trade-offs to the existing
sensor network literature.

9. CONCLUSIONS
Genomics point-of-care is coming closer to being a re-

ality with the advent of new portable genomic sequencing
technologies. To anticipate the exciting opportunities in
the future we have created EpiMobile, a conceptual pro-
totype for genomics point-of-care workflows on a mobile de-
vice. EpiMobile’s architectural designed attempts to mini-
mize its computational resource footprint and facilitate lo-
cal and global communication of results in the presence of
Internet connectivity constraints. The design and imple-
mentation of EpiMobile can help healthcare teams mount
more rapid responses to emerging or evolving disease out-
breaks, whilst also communicating with national or global
public health agencies whenever possible. These features of
EpiMobile set it apart from current work that rely on cloud-



based data processing, or that process much less data on the
device. While our findings are limited by the exploratory
nature of our work and our lack of access to MinION and
its proprietary software, we none-the-less believe that Epi-
Mobile’s design and specific diagnostic application context
contribute an interesting and important basis for the future
development of mobile device based genomics point-of-care
applications.

9.1 Future Work
Currently, EpiMobile is a minimal viable product for

pathogen point of care diagnosis. However, with this base
in place there are a number of potential paths to explore as
part of future work.

On the public health front is would be helpful to be able to
also provide tailored treatment suggestions, and/or identify
drug resistance when it occurs. However, treatment choices
and responsiveness remains an open problem for the bioin-
formatics and molecular biology communities as clear links
between genomic data, phenotypes (i.e. appropriate treat-
ment), and outcomes (i.e. responsiveness to treatment) are
difficult to establish [35]. Still for some pathogens where the
link between genomic data and treatment is better known it
may be possible to incorporate treatment suggestions.

There are also technical advancements that are possible
for future version of EpiMobile. Alternative data models
for efficiently transmitting and storing information, espe-
cially genomic data, could provide richer and more valu-
able information for clinical and local health teams to re-
spond even more effectively. Fully distributed computing
over mobile devices, for example using mobile ad networks,
including mesh networks, could improve the sophistication
of local analyses making EpiMobile even more robust and
useful in resource constrained environments. More complex
computations may also be possible as advances in artificial
intelligence and machine are also being translated to mobile
devices without relying on an Internet connection [25, 22].
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