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Abstract— The goal of this work is to test whether or
not spectrograms are a reasonable way to visually represent
music as image input to feed to deep learning networks.
We implemented music classification on songs’ spectrograms
using a CNN and then utilized the trained network to modify
spectrograms, similar to the Google’s deep dream method. We
have also attempted to change the spectrograms through neural
style transfer and CycleGAN. In all modification methods,
the spectrograms were converted back to audio and assessed
qualitatively. While classification achieves a good accuracy,
music modification may require tuning and post-processing but
does produce promising sound tracks.

I. INTRODUCTION

In this work, we use deep learning methods to classify
and modify music. There are numerous ways that music can
be represented when using deep learning methods. Some of
the possible representations are - MIDI, text, notes, metadata
like pitch class [1]. In our case, we visually represent music
using spectrograms.

We can reason about the effectiveness of using spectro-
grams in deep learning by classifying them based on genres
of music. If our classification results were not up to par,
it would be safe to say that representing music using only
spectrograms is not ideal. Our classification method using
just spectrograms, however achieves a good accuracy which
led us to further exploring their use in music modification.

Deep learning has been successfully applied to a num-
ber of areas, such as music classification and generation.
However, there is a dearth of research in the area of
modifying music using deep learning approaches. We used
Google’s Deep Dream approaches, neural style transfer and
CycleGAN to modify music with spectrograms as input. The
modified spectrograms were then converted back to audio.
Our intention was for the modified track to be of reasonable
quality and yet noticeably different from the original version.

II. RELATED WORK

A. Learning in Music Generation

To the best of our knowledge, there has not been any
work done in using deep learning methods to modify music.
However, there has been a lot of focus on generating music.
Google’s Magenta team used RNNs for polyphonic music
generation [2], [3]. They modeled polyphony as a single
stream of note events with special START, STEP END, and
END symbols. Deep Jazz generated Jazz music using RNN
[4]. They used MIDI file to represent the music. One of the
common aspects in such existing methods is the use of RNN
and non-visual representation of music. In this project, we

attempted to modify music by representing it visually using
spectrograms.

B. Music Classification

The work in audio classification using convolutional neural
networks (CNNs) has been studied in [5]. Music genre
classification in particular has been explored in [6], [7],
[8], and spectrogram based classification has been success-
fully implemented in [9], [10], [11] using various models,
varying from k-nearest neighbors to deep CNNs. We are
especially interested in classification of music spectrograms
using CNNs for it will allow us to learn most prominent
features of each music genre to later ‘amplify’ those in a
given audio track, similar to the deep dream method.

C. Deep Dream

One of interesting methods of image modification is Deep
Dream [12], [13]. Deep dream iteratively enhances an input
image to elicit a certain behaviour by feeding the previous
iteration’s output as an input, and in every pass, ’tweaking’
the image to look more like a certain class of objects
(from the perspective of the neural network). Eventually, the
network will modify the image so much that it can ’see’ the
objects of that certain class, with high confidence.

D. Neural Style Transfer

Another method to modify visual input is through neural
style transfer [14]. The core idea behind it is to define
two distances Lcontent and Lstyle that would measure how
different an input image is to the given content and style
images based on the features from a CNN. Then, the input
image is run several times through the net in order to
minimize both of the distances.

E. GANs

Previously, image-to-image translation has been achieved
by learning the mapping between input and output images
using a set of aligned image pairs. But in many scenarios,
paired training data are not available. In [15], the authors
managed to learn a mapping between two domains in
the absence of paired data by using generative adversarial
network and introducing a cycle consistency loss. Inspired
by this work, we applied the same model to spectrogram
images from different genres and achieved music genre
transformation.



Fig. 1. An example of a spectrogram.

III. METHODS

We converted music to spectrograms, and then used a CNN
to classify them based on the genres of the music - hip hop,
rock, classical and electronic. The trained CNN was then
used to implement Google’s Deep Dream which allowed us
to modify spectrograms. We also evaluated the effectiveness
of using neural style transfer and GANs on spectrograms to
modify music.

A. Preprocessing

Spectrograms depict the spectrum of frequencies of sound
as they vary with time. The audio undergoes a few trans-
formations before resulting in a spectrogram of desired
scale that is later used in our experiments. We extracted
the raw waveform data x from an mp3 file using python’s
librosa library. The spectrogram was extracted from x by the
following sets of transformations.

D = stft(x),

where stft is short-time Fourier transform and D is a 2
dimensional complex matrix where D[f, t] holds information
about the amplitude and phase of frequency bin f at time t.

M = 10 ∗ log(|D|),

where each entry of M is the amplitude in decibal units.
M is the spectrogram that is used in our methods. Figure 1
shows an example of such a spectrogram.

One disadvantage of using spectrograms to represent mu-
sic is that the conversion from audio to spectrograms is
not invertible, since spectrograms only hold the amplitude
information. Hence, in our music modification processes, it is
important to supply phase information that can be combined
with the modified spectrogram to get the audio back. In our
cases, we mostly used the original phase of the unmodified
song to get the audio relevant to the modified spectrograms.
In our deep dream approach, we also experimented with
modifying the phase of the original song and using the
modified phase for conversion to audio.

To make the size of the spectrogram more reasonable and
also to expand the dataset, we divide each 30-second period
song into three 10-second chunks. Each chunk is converted to
spectrogram using the method described above, resulting in a
matrix of size 1025×860. The amplitude of the spectrogram
is then converted to gray scale image by scaling to the range
(0, 1). To preserve sound quality, each gray scale image is
resized to 512 × 512, instead of the regular input size of
image classification networks.

B. Classification

For classification we deployed ResNet-18 model, first
introduced in [16]. Given a spectrogram of a song, we trained
the ResNet-18 to classify it as being one of the following 4
music genres: classical, hiphop, rock and electronic. Cross-
entropy loss is used during training.

As discussed in preprocessing, we are not sure how to sup-
ply phase information to modified songs. A naive approach
would be using the original phase of the song. Besides this,
we think it would be interesting to see if modification on
amplitude and phase separately or jointly would give better
results in deep dream. So besides classifying on amplitude
alone as previous works, we also experimented with clas-
sifying on phase information alone, and on amplitude and
phase at the same time.

As mentioned above, the input to the network for classify-
ing on either amplitude or phase alone are gray scale images
of size 512×512×1. For classifying on both amplitude and
phase, we stack the gray scale images of phase and amplitude
information of the same chunk, resulting in an image of size
512× 512× 2.

C. Deep Dream

Utilizing the trained ResNet-18 III-B, we applied Google’s
Deep Dream method of image modification to transform an
input spectrogram. The goal of deep dream is to emphasize a
particular layer of the trained CNN on the input spectrogram.
This is done by maximizing the L2 norm of activations of the
layer in the neural network. In this version of the deep dream,
the modified spectrogram depends on the most prominent
features learned by the CNN. However, it is also possible to
attempt to modify a song so that it sounds similar to another
song (known as the guide song) from a different genre. This
is done by maximizing the dot product between activations of
the original spectrogram and best matching correspondences
of the guide spectrogram. Maximization in both cases is done
by applying gradient ascent at multiple octaves (resolutions)
of the spectrogram images.

D. Neural Style Transfer

Applying image style transfer [14] to the spectrograms,
we have tried to transfer the style of one song to another
song. Following the original work, we have used a pretrained
VGG-19 neural network to extract features. To transfer the
style, we create a new image that matches the content of the
original track’s spectrogram and the style of a spectrogram
of a song of a different genre. To do so, we minimize both



Fig. 2. Overview of cycleGAN model

Fig. 3. An illustration of cycle consistency loss

the content distance Lcontent and the style distance Lstyle.
The loss function is defined as follows:

Ltotal(c, s, g) = αLcontent(c, g) + βLstyle(s, g),

where x is an image being generated, c and s are the content
and style images, and α and β are parameters weighting the
importance of content and style reconstruction respectively.
Refer to the original paper [14] for the definitions of the two
distances Lcontent and Lstyle.

E. CycleGAN

As we have talked about in Section II-E, [15] successfully
achieved image-to-image translation using GANs. In our
project, we examined if this architecture can be applied
to spectrograms of different genres of songs and achieve
song style transformation. As shown in Figure 2, the model
is learning two mapping functions, G : X → Y and
F : Y → X between two domains (i.e. spectrogram images
from two music genres). Discriminator DY encourages G to
translate X into outputs indistinguishable from domain Y ,
and vice versa for DX and F . However, this mapping cannot
guarantee that the learned function will map an individual
input to the desired output. To solve this issue, the authors
in [15] proposed another cycle consistency loss to make sure
that the translated image can be translate back to the original
image, as shown in Figure 3.

IV. DATASET

We ran our experiments on the Free Music Archive (FMA)
dataset that contains full-length music tracks along with their
pre-computed features, and metadata including genre, tags,
artist information, etc. The dataset has over 100,000 music
files corresponding to 161 genres arranged in a hierarchical
order of genres [17], [18].

Fig. 4. Distribution of classes

TABLE I
CLASSIFICATION RESULTS

Using only amplitude 83.48%
Using only phase 63.31%
Using both amplitude and phase 81.50%

In the scope of our project, we used four genres, which are
rock, pop, electronic and classical. A total of 6,811 examples
were obtained from a subset of the FMA dataset referred to
as fma medium, which consists of 25,000 30-second tracks.
Dividing each example into 3 chunks gave a total number
of 20,433 examples. 80% of the data was used for training,
and 20% of the data was used for testing. The distribution
of the number of examples in each class is shown in Figure
4.

V. EXPERIMENTS

A. Classification

During training, we used the architecture described above,
and used a batch size of 16 with an initial learning rate of
10−3. The training process was ran for 500 epochs [19].

Results for classification is shown in Table I. As can be
seen from the table, classifying on amplitude alone gives
the best accuracy, which is 83.48%. Using both amplitude
and phase gives a slightly lower accuracy, while classifying
on phase alone has the lowest accuracy, which is 63.31%.
This might imply that amplitude contains more information
regarding a song’s genre than phase.

The confusion matrix for classifying only on amplitude is
shown in Figure 5. From the confusion matrix we can see that
even though classical has much less examples than the other
classes, it has the highest class accuracy. Electronic and hip
hop are sometimes misclassified as each other. Electronic,
hip hop and rock are rarely misclassified as classical.

B. Deep Dream

There are two kinds of deep dream experiments that we
performed - one where we do not try to control the modifica-
tion process (Dream) and the other where we try to control
the modification process with a guide song/spectrogram
(Dream Control). We applied the deep dream approaches at
the 13th convolutional layer of the trained ResNet-18. The



Fig. 5. Confusion matrix for classifying on only amplitude

Fig. 6. Deep Dream Results. From left to right: original hip hop song,
modified hip hop song by deep dream and modified hip hop song by dream
control with a classical song as a guide song

number of octaves used was 6 and the octave scale used
was 1.4 - meaning that the deep dream was applied on 6
different resolutions of images where each resolution was
1.4 times lower than the previous image starting from the
original image. At each octave, gradient ascent was applied
for 20 iterations [20].

Figure 6 shows the output of a deep dream example.
Dream like features are evident in the lower portion of
the spectrograms. In this case, the original song is a hip
hop song. In the Dream version, the modified song ends
up having an unusual and pleasant tone towards the end
of the song. However, in the Dream Control version, we
attempted to make the hip hop song sound like a classi-
cal song but the results are not satisfactory. The modified
version does not have any classical elements in it and
sounds like the original version with added noise. The audio
results can be found in https://kimalser.github.
io/dreaminginmusic.

In the examples discussed above, deep dream approaches
were applied on the CNN trained on just amplitude of
frequencies and the conversion of the modified spectrograms
back to audio involved the phase of the original song. We
also experimented with applying deep dream on the CNN
trained on just phase of the frequencies and the CNN trained
together on both the amplitude and phase. In these cases,
the conversion of the modified spectrograms back to audio

Fig. 7. Neural Style Transfer Results. From left to right: original classical
piece, ”stylistic“ rock song, and the resulting generated song.

Fig. 8. Cycle GAN Results.

involved the use of modified phase resulting from the deep
dream approaches. The quality of the results in either of these
cases is worse than that resulting from using the original
phase of the song.

C. Neural Style Transfer

For neural style transfer [21] we attempted to convert
some classical songs to rock. For this set of experiments,
we used the ratio of content to style weights α/β of
1 × 10−3. In Fig.7, there is an example of how the orig-
inal classical song’s spectrogram has changed after apply-
ing a stylistic change of a rock song. The audio results
for the shown spectrograms can be found in https://
kimalser.github.io/dreaminginmusic. To con-
vert the spectrograms back to audio, they were combined
with the original songs’ phases.

D. CycleGAN

We have also tried converting classical pieces into rock
songs using a CycleGAN model [22]. The training set
consists of 5397 rock and 1074 classical spectrograms. Due
to time and hardware limitations we were only able to train
CycleGAN for 13 epochs with a batch size of 1. Additionally,
to speed up training, the spectrogram images were resized
from 512 × 512 to 256 × 256 prior to training. The losses
for CycleGAN generators and discriminators still oscillate
by the end of the 13th epoch, which doesn’t seem to be
atypical, given the number of epochs. Training for a larger
number of epochs (e.g. 100, 200) might be needed for losses
to converge.

Fig. 8 shows a sample classical song conversion. The audio
results can be found in https://kimalser.github.
io/dreaminginmusic.

VI. CONCLUSION

In this work, we used visual representations of songs
as inputs to state-of-the-art deep learning methods to test
whether they are suitable for music classification and modi-
fication. The results show us that classification on amplitude



of songs yields a good accuracy, and confusion matrix of the
classification result is well in accordance with the features of
the genres, suggesting that amplitude alone carry sufficient
information regarding their genres, and spectrograms are well
suited for the task of music classification. In our modification
methods, deep dream, neural style transfer and CycleGAN,
resulting spectrograms suggest that the methods can be
applied to spectrograms successfully in theory. And they
did produce some interesting and promising sound tracks.
However, many converted songs have problems such as
unapparent changes from original songs and noise. Post-
processing such as filtering might help with improving the
quality of the results. More reasonable modifications of
songs might require a better understanding of the relationship
between phases and songs, or operating on the waveform
directly.

VII. FUTURE WORK

In the future, the first step would be applying post-
processing to current results and see if this could produce
music tracks of higher quality. It would also be of interest
to see whether changing 2-D convolution in the network to
1-D, and operating on waveform directly could solve the
problem of missing proper phase information. It might be
a more natural way of processing music since it inherently
contains time dimension as its component.

APPENDIX

A. Timeline

Week Task Person

March 4 - 10 Audio/image conversion Itrat, Sijia
March 11 - 17 Train CNN, Neural Style Transfer Sijia, Alex
March 18 - 24 Deep Dream and GANs Alex, Itrat
March 25 - 31 Evaluation All
April 1 - 15 Evaluation, Writeup All

TABLE II
TIMELINE AND DISTRIBUTION OF WORK FOR THIS PROJECT

Table II shows how the work has been distributed among
the team members and the approximate dates and deadlines
for each milestone.
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