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ABSTRACT
Creating competing teams in online multiplayer games is
called matchmaking. The goal of a matchmaking system is
to form teams from a pool of players and match the teams
against each other, such that the chances of winning the
game are roughly the same for two opposing teams. Cur-
rent matchmaking systems mainly consider players’ ranks,
and while they do form balanced teams from the rank point
of view, the team formation might not always be fair if one
of the teams has a more complete group skill set, compared
to the other team. In this paper, we are making an at-
tempt to improve over the existing matchmaking systems
by taking into account both ranks of the players as well as
their experiences in the game. We show that the described
problem of forming teams is NP-hard and present a greedy
algorithm as one of the possible solutions. We also evaluate
our findings using open data provided by the Riot Games
API that contains statistics on players and their matches in
the online multiplayer game League of Legends (LoL).

1. INTRODUCTION
Designing a fair matchmaking system for multiplayer video
games is important as it may impact players’ satisfaction
and their loyalty to the video game, which in turn affects the
company’s revenue. To the best of our knowledge, there has
not been much published work in this area, with most works
focusing on the analysis of current matchmaking systems but
offering no formal formulation or solution. In this paper, we
provide the problem definition and design our solution for
matchmaking in the online game League of Legends [1].

League of Legends is a team-based strategy game. There are
two teams playing against each other in a combative arena,
with each team having five players. The goal of the game is
to take down the opponents’ nexus located in the centre of
their base before they destroy one’s own team nexus. The
purpose of matchmaking is to form two teams from a pool
of players so that both teams have approximately the same
chance to win the game, that is each team should have a 50%
chance of winning [2]. The teams are formed by consider-
ing each player’s ranking, which is calculated by a method
based on the Elo rating. This rating system was originally
created for reevaluating ratings of chess players based on
their ratings before a match and the match outcome [3; 4].

However, there is a bit more nuance to League of Legends.
At the start of the game, each player chooses a character to

play, also known as champions. There are multiple positions
on the map where the players need to place their champions,
which we will refer to as lanes. The role that a player chooses
for their character almost certainly defines what lane the
player is going to be at most of the game. Every champion
is most effective only in a limited number of roles in the
game, which is in most cases one role, sometimes two and
very rarely more than two roles.

In this paper, we will show that in ranked games, players
on average have a stronger preference for a single champion
role. Moreover, there is a positive correlation between hav-
ing a more diverse team and winning the game, which is
why when choosing champions, players should try to pick
champions of varying roles. For the above two reasons, it is
reasonable to suggest an enhancement to the current match-
making system to not only consider players’ ranks, but their
playing habits as well to allow a fairer game. Therefore, we
formally define the problem of matchmaking with role cover-
age (MMRC), we show that the MMRC problem is NP-hard,
and propose a greedy competing team formation algorithm
to solve the problem. We then evaluate our solution against
existing League of Legends match data to show that we can
form more diverse teams without sacrificing the homogene-
ity of ranks, within and between teams, that the current
matchmaking system provides.

The rest of the paper is structured as follows. Section 2
outlines our motivations for this paper. Section 3 follows,
providing background on related work. We cover the process
of League of Legends data gathering in section 4. Then in
section 5, we analyze the League of Legends game data to
show why it is reasonable to make changes to current match-
making systems. Section 6 formalizes the problem and no-
tation. In section 7, we study the complexity of the problem
and propose a greedy algorithm. Section 8 presents an eval-
uation of the algorithm against real game data. Section 9
discusses some key points of our paper. Then in section 10,
we cover challenges and weaknesses of our approach. Sec-
tions 11 and 12 discuss the direction of future work and
provide conclusions to the paper.

2. MOTIVATION
Motivation for proposing an enhancement to competitive
team matchmaking systems came from observing a very
unique application of team formation to the very popular
domain of online multiplayer competitive team based video
games. Competitive team based games such as League of
Legends, DOTA2, Heroes of the Storm, Overwatch, Smite
and others are the cornerstone of the currently exploding



eSports industry. Early 2017 forecasts predicted 2017 to hit
$696 million in revenue and forecast it to grow to $1.5 bil-
lion by 2020 [5]. Actual number for 2017 showed revenue
of $1.5 billion with new estimates of growth nearing $2.3
billion by 2020. [6]. Making balanced teams to ensure fair
competition and player satisfaction in game can have sub-
stantial impacts on a game developers’ bottom line. With
this in mind, we explored existing research in the field of
competing team matchmaking in online games and found
that there was a definite lack in any formal formulation or
solution of the problem, which we explore further in section
3. Furthermore, we explored game developer media releases
and discussions regarding the matchmaking systems in their
games, all of which provided limited details on the actual im-
plementations or how their systems functioned. We suspect
this is to limit the exposure of such systems to cheating or
exploitation. Next, we explored existing works in team for-
mation and found that there were none that extended team
formation to forming competing teams, which we also dis-
cuss further in section 3. The problem also proved itself
challenging and interesting from a theoretical point of view:
a multi-objective optimization problem, NP-hardness, real
world time complexity implications, and potential greedy al-
gorithm solution. With each of these aspects building upon
the next, we felt a strong motivation to propose our work
herein as meaningful contributions to an area little studied
but ripe with potential.

3. RELATED WORK
With the incredible popularity of League of Legends - its
2016 monthly users numbered 100 million [7] - there is a
surprising lack of research on the subject of matchmaking
within these types of competitive team based games, more
commonly known as MOBAs (Multiplayer Online Battle
Arenas). The work that does exist typically falls into two
camps. In the first camp, we have player skill analysis or how
to more accurately evaluate and rate a players skill, which
is the primary determinant in matchmaking. In the second,
we see modifications of matchmaking systems themselves in
order to form more balanced teams.

Recent work by Chen et al. looked at League of Legends
using a model-based analysis approach and found that base
skill of a player, base skill of champions, and champion-
specific skills of a player were the largest attributes con-
tributing to a player’s skill. They suggest that these should
be incorporated into determining a player’s skill rating in-
stead of purely basing it on match win/loss records [8].
Suznjevic, Matijasevic and Konfic proposed an Application
Context Aware Rating algorIthm (ACARI) for determining
a player’s skill rating over a more traditional Elo approach,
which is typically based solely on match wins/losses [9]. in-
terestingly, ACARI takes into account players’ role; an im-
portant trend seen throughout other works as well [10; 11;
12]. Prakannoppakun and Sinthupinyo propose a novel neu-
ral network method to determine the skill rating of a player
[13]. They compare this against the Elo rating method and
show that their method is more accurate in predicting match
outcome and much better when it considers members of the
team as part of the analysis.

In the second camp, focusing on modifying the matchmaking
system, we find several proposals on ways to modify these
systems - many of which recommend incorporating a role

based approach, yet most lack a formal formulation of the
problem or solution of a matchmaking algorithm. Myślak
and Deja are one of the first to analyze League of Legends
match data and suggest that the existing matchmaking sys-
tem does not use the internal structure of gameplay [10].
They focus particularly on player role and show that teams
with a proper role distribution win more matches. This leads
them to suggest a matchmaking system that should implic-
itly take into account forming teams that have full role cov-
erage by utilizing player in-game preferences for a particular
role based on their match history [10]. Jiménez-Rodrguez et
al. suggest a role based approach for matchmaking in online
multiplayer games that can easily be extended to incorpo-
rate other user defined preferences or past experiences to
improve player satisfaction [11]. Claypool et al. perform an
in-depth analysis of the effectiveness of League of Legends
matchmaking system through match history data analysis
and a user study. Their work focuses primarily on the dis-
connect between game balance from the matchmaking sys-
tem and player opinions of game balance. Interestingly, even
if a game is balanced by the matchmaking system, if play-
ers win a match they perceive it as slightly unbalanced, but
when they lose they find the teams to be more unbalanced.
Players find games they win more enjoyable, and surpris-
ingly, games unbalanced in their favour are found to be most
enjoyable. This has lead to some interesting suggestions on
how matchmaking systems should take into account player
losing streaks and other in-game attributes [14]. Pobiedina
et al. looked at the cooperation and success of teams in
online games [12]. Through an in-depth analysis of match
results of a different yet very similar MOBA, DOTA2, they
found that a proper role distribution in teams increases the
team’s chances of winning [12]. Lastly, for works that for-
malized the problem and proposed a solution, we have De-
lalleau et al. with their novel neural network evaluation
system for matchmaking [15]. Their BalanceNet is a step in
the right direction and given better data may prove to be
an effective way to form more balanced teams. Chen also
continues his work in this area, recently proposing a novel
matchmaking framework (EOMM) [16] with the objective
of optimizing player engagement. It has been evaluated on
1vs1 games, but it is proposed that it can be extended to
multiplayer games involving teams.

We investigate work from Lappas, Liu and Terzi, which ex-
amines the idea of forming teams to solve a task requiring
specific skill coverage [17]. In particular, their 2009 paper
Finding a team of experts in social networks formulates the
problem of team formation: Given the set of n individuals
X = {1, ..., n}, a graph G(X,E), and task T , find X ′ ⊆ X,
so that C(X ′, T ) = T , and the communication cost Cc(X ′)
is minimized. They propose several algorithms to solving
variations of the problem and we draw upon them as in-
spiration for our solution to forming competing teams. To
the best of our knowledge, no team formation works have
been applied to the context of forming competing teams. We
feel that this opens up an interesting opportunity to apply
a considerable amount of existing research and theory to a
new domain with massive amounts of data and real world
relevance.

4. DATA GATHERING

4.1 API Access



To evaluate our algorithm we gathered data from League of
Legends, the most popular and accessible MOBA. The first
step was to gain access to their game data API [18], which
after creating an account to evaluate the contents of their
API, we determined the level of player game, match and
rank data was sufficient for our work. All accounts receive
an initial development API key that is severely rate limited;
after consulting their research portal page [19], we submit-
ted a personal project application to receive a production
API key with very large rate limits. With wait times over
a month on project approval, we were able to expedite the
application by discussing the project with one of Riots API
developers, Riot Tuxedo, on their RiotAPIDevCommunity
discord server [20]. In order to gather match data, a crawl-
ing process is required that involves first getting a small
number of player ids, getting those players match histories,
obtaining match details, extracting the other 9 player ids
from those matches, and repeating the crawling process to
continue gathering data. This crawling processed proved
to be too slow and inefficient to gather a large number of
matches between a specific date range across all game server
regions1.

4.2 Data Partner
To speed up the data gathering process we reached out to
several League of Legends community statistic sites as po-
tential data providers. Fortunately, one responded - Team
Solo Mid - and after discussing our project with one of
their software engineers, they shared with us over 7.5 mil-
lion match ids and their corresponding region code that cov-
ered matches played out over a timeframe of June 2017 to
November 2017.

4.3 API Endpoints
With this match id dataset and our production API key,
we wrote python scripts to call several game API endpoint.
First was the /lol/match/v3/matches/{matchId} endpoint
that gave us a response json containing the match outcome
details. This included the champion each player chose, the
role they played during the match and which team won. As
match outcome details were retrieved the player ids were
parsed out and another script called the /lol/league/v3/

positions/by-summoner/{summonerId} endpoint to gather
a player’s current rank. Players are divided across seven
ranked tiers (Bronze, Silver, Gold, Platinum, Diamond, Mas-
ter, Challenger). With five of these tiers (Bronze, Silver,
Gold, Platinum, Diamond) having sub-tiers (V, IV, III, II,
I). These tiers are Elo based, but the true Elo is hidden
by the game designers. To solve this issue we did a rough
conversion based on the game’s earlier version when the
game still displayed the Elo rank [21]. Lastly the /lol/

champion-mastery/v3/champion-masteries/by-summoner/

{summonerId} endpoint was used to gather the frequency at
which players play a specific champion. Whenever a player
plays any of the 139 champions in the game, they accumulate
champion mastery points for that champion [22]. Procuring
champion mastery points is fairly linear: the more a player
plays a given champion, the higher their mastery points for
that champion. This endpoint returned a player’s ordered
list of champions and their mastery score. We used this as

1A server region is a local geographic
zone where League of Legends is played
(http://leagueoflegends.wikia.com/wiki/Servers).

a proxy to infer the preferred role of a player instead of do-
ing a historic match outcome analysis on each player, as it
would have been too time consuming.

4.4 Data Storage
These scripts were deployed to an AWS EC2 server, to en-
sure a stable connection to the API, and the retrieved data
was stored to a MySQL server for easy access. Upon request,
our data is available as a MySQL dump file for anyone wish-
ing to utilize it for future analysis.

5. GAME ANALYSIS
As mentioned in section 3, there were several works that
suggest that solely Elo based matchmaking might be infe-
rior to those that take into account more user variables. In
this section, we explain why we propose to include players’
preferred roles into the current matchmaking systems. We
analyzed over 700 000 ranked games2 in League of Legends
to discover general preferences of the players, as well as how
team diversity affects match outcomes.

First, we will find out whether or not players generally have
role preferences in League of Legends. To do that we will
consider mastery scores of each player [22]. A mastery score
of a champion reflects how much a player has played that
champion in the past. While considering the entire game
history might be an oversimplification, it serves as a good
enough approximation of players’ preferences. Using a slid-
ing window (e.g. considering last n matches or matches
in the past n months) would be more accurate, but unfor-
tunately due to time constraints we could not obtain such
detailed data, and therefore we use mastery scores that were
earned by each player starting from their very fist game. We
discuss the implications of this further in section 10, where
we review challenges and limitations.

Fig 1 shows role mastery score distribution, averaged for
all players in Bronze/Silver/Gold, Platinum/Diamond and
Master/Challenger tiers3. As can be seen from the distribu-
tions, across all tiers, players generally have preferred roles;
it is most visible in the highest tiers (i.e. Master and Chal-
lenger, fig. 1c). Therefore, to provide higher player satisfac-
tion, it is reasonable to include these unique player prefer-
ences into account when forming teams.

To find out how team diversity is related to match outcomes,
we filter the matches to only consider the ones in which the
two teams have an unequal number of roles. Then we calcu-
late a point biserial correlation coefficient (rpb) between the
number of roles per team and a Boolean variable that indi-
cates whether each team has won or lost the match. As ex-
pected, there is a positive correlation between the two vari-
ables, with rpb ≈ 0.611, meaning that more diverse teams
are more likely to win a game when matched against a less
diverse team.

6. PROBLEM DEFINITION
From the point of view of a matchmaking system, there
is a pool of players, each with their unique champion/role
preferences and ranks, and the goal is to form two teams

2Ranked games are competitive games where match out-
comes affect players’ rankings.
3A tier that a player is in is defined by the player’s rank-
ing. The tiers in ascending order are Bronze, Silver, Gold,
Platinum, Diamond, Master, Challenger.



(a) Mastery score distribution in Bronze, Silver and Gold tiers

(b) Mastery score distribution in Platinum and Diamond tiers

(c) Mastery score distribution in Master and Challenger tiers

Figure 1: Role preferences approximated by mastery score
distributions, sorted in descending order. The leftmost bar
indicates the most preferred role and the rightmost bar in-
dicates the least preferred role.

that would have equal chances to win the game. Formally,
the problem is defined as follows.

Problem 1. Given a set of players P = {1, ..., n}, a
set of roles R = {1, ...,m}, and a set of champions C =
{1, ..., l}, form two teams Tk ⊂ P , k ∈ {1, 2} of m players
each (i.e., |Tk| = m), such that all m roles are covered in
each team, and the standard deviation of ranks within one
team and the absolute difference between average ranks of

the two teams, are minimized. Each champion j assumes
a set of roles Cj ⊂ R and each player i has a rank ei
and a mastery score sj for each champion they plays, i.e.,
pi = {ri, (j, sj)|j ⊂ C}. We denote the most preferred role
for a player i as ri. The most preferred role for a player
is the role of the champion for which they have the highest
mastery score. We denote the roles covered by a team Tk as
F (Tk)

We call the matchmaking problem defined above as Match-
making with Role Coverage (MMRC) problem.

7. GREEDY APPROACH
In this section, we study the complexity of the MMRC prob-
lem and propose a greedy algorithm to solve the MMRC.

7.1 Complexity
We consider the MMRC problem as outlined in section 6.

Proposition 1. The MMRC problem is NP-hard.

Proof. We prove the proposition by a reduction from the
Number Partitioning Problem (NPP). An instance of the
NPP consists of a list a1, a2, ..., aN of positive integers. The
NPP seeks to find a partition, i.e. a subset A ⊂ {1, ..., N}
such that the discrepancy E(A) = |

∑
i∈A ai −

∑
i 6∈A ai| is

minimized. We transform an instance of the NPP problem
into MMRC problem by forming a team of N/2 players each
and the number of roles to one. Then there exists a partition
A of N integers such that the discrepancy E(A) is minimized
if and only if there exists a partition of the N players such
that the difference in the average rank is minimized.

7.2 Greedy Algorithm
We propose a greedy approach for the MMRC problem. The
pseudo code for this algorithm is shown in Algorithm 1. Ini-
tially, both teams start with no players and then from the
pool of available players, the algorithm greedily selects a
player who minimizes the objective as defined in section 6.
The average rank of the team Tk after adding a player i is
computed as follows:

eavg(Tk ∪ i) =
ei +

∑
s∈Tk

es

1 + |Tk|

while the standard deviation is computed as:

esd(Tk ∪ i) =

√
1

1 + |Tk|
((ei − eavg(Tk ∪ i))2

+
∑
s∈S

(es − eavg(Tk ∪ i))2)

The algorithm starts with choosing some player p∗ from a
pool of players based on some heuristics (e.g. random, or
player who has been waiting for the longest time, etc.). It
then iterates through the pool of players to find the player
who optimizes the objective function (i.e. the difference be-
tween average team ranks and standard deviation of ranks
within each team are minimized). An extra condition is that
every player chosen for any of the teams should “cover” a
role that has not yet been covered by other players in the



team. This is done by looking at the value ri that reflects
which role is preferred by the player i and the Boolean vec-
tor F (Tk) that shows which roles a team k covers. If there is
no such player who can cover the needed role, we choose the
player who only minimizes the objective, without covering
the specified role. α is a weight parameter, indicating how
important homogeneity of ranks within a team is, compared
to that between two teams. The algorithm iterates until
both teams are filled. The time complexity of the greedy
algorithm is O(m2n).

It is important to mention here that we take an implicit
approach with our solution to the competing team match-
making problem. This means that the teams that our al-
gorithm forms do not force a player to play the role that
the algorithm assumed they would when forming the teams.
Instead we form teams with the intent that if the players
choose their preferred role, each player will get the role they
want, and not have to compete with another teammate for
it. This would lead to a better player experience in regards
to them getting to play the role they want and having bet-
ter odds at winning the game because they have an optimal
team role distribution.

Algorithm 1 Greedy competing team formation algorithm

Input: Set of players P
Output: Teams T1 and T2
1: T1 ← {p*}
2: T2 ← ∅
3: while (|T1| < m) or (|T2| < m) do
4: k ←argmink∈{1,2}|Tk| . if equal, return 1
5: p←argminp∈P,rp /∈F (Tk){|eavg(Tk ∪ p)−
− eavg(Tk′ 6=k)|+ α · esd(Tk ∪ p)}

6: Tk ← Tk ∪ p
7: F (Tk)← F (Tk) ∪ rp
8: return T1, T2

8. EVALUATION
For the evaluation of our greedy algorithm, we compare the
teams formed by our approach with those retrieved from
the actual League of Legends match data. We simulate the
player pool by sampling matches from the data and use play-
ers that participated in those matches as our player pool.
We then compare the teams from the sampled matches to
the teams that our algorithm was able to form from the
simulated player pool.

We evaluate the performance of our algorithm in terms of
the most preferred role coverage per team, the homogeneity
of ranks within one team and between the two teams. Con-
cretely, we compute the most preferred role coverage and
rank homogeneity for unique teams across a player pool of
1000 from the League of Legends match data. And, as de-
scribed above, using the same pool of players, we form teams
using our algorithm with α = 1, and compute the same mea-
sures. We perform identical evaluation for a player pool of
10000 and 50000 as well. The results for all three evaluations
are shown in figures 2, 3 and 4. As expected, teams formed
by our algorithm have better most preferred role coverage
without sacrificing the rank homogeneity within each team
and between the teams. In fact, our algorithm performs
even better in terms of absolute difference of mean ranks
between teams using different pools of players.

(a) Distribution of the most preferred role Coverage.

(b) Distribution of the standard deviation of the ranks within teams.

(c) Distribution of the absolute difference of the Mean Ranks between
teams.

Figure 2: Distribution of the most preferred role Coverage,
the standard deviation of the ranks within teams and the
absolute difference of the Mean Ranks between teams for a
player pool of 1000.

9. DISCUSSION
In the previous section, we found that our algorithm per-
formed better in regards to optimizing for role coverage than
was found in the real match data. We believe this method
would help in forming competitive teams and result in fairer
game play.

Based on comparison of the actually composed teams and
the teams formed by our algorithm, our method outper-



(a) Distribution of the most preferred role Coverage.

(b) Distribution of the standard deviation of the ranks within teams.

(c) Distribution of the absolute difference of the Mean Ranks between
teams.

Figure 3: Distribution of the most preferred role Coverage,
the standard deviation of the ranks within teams and the
absolute difference of the Mean Ranks between teams for a
player pool of 10000.

formed the original matchmaking system in terms of mini-
mizing rank differences. We observe that the original match-
making system optimizes for rank homogeneity as well, and
we expected it to perform at least as well as our method.
One possible reason why it did not is because the pool of
players available at the time could be different from the sim-
ulated pool that we consider. The original matchmaking
system could probably also optimize for other metrics that

(a) Distribution of the most preferred role Coverage.

(b) Distribution of the standard deviation of the ranks within teams.

(c) Distribution of the absolute difference of the Mean Ranks between
teams.

Figure 4: Distribution of the most preferred role Coverage,
the standard deviation of the ranks within teams and the
absolute difference of the Mean Ranks between teams for a
player pool of 50000.

we did not consider in our algorithm (e.g. queue times).

In section 7, we discussed that our greedy algorithm solution
took an implicit approach when forming teams. However,
League of Legends began developing a new mechanism of ex-
plicit role preference in their matchmaking system in recent
years. Upon further investigation, it appears that League of
Legends realized the importance of role distribution on the
success of a team to win a match. In 2013, they introduced



a new prototype matchmaking system called Team Builder
[23] that let players explicitly define the role they wanted to
play and the matchmaking system would form a team with a
proper role distribution based on what players explicitly de-
fined. The system was never fully adopted as the developers
found it too inflexible, having teams unable to change roles
before the game started, and reduced the ability of teams
to form specific strategies or champion compositions. It was
then replaced with a new system called Champ Select in
2016 [24], which was fully adopted by 2017. Champ Select
has players explicitly define roles they wish to play and the
matchmaking system then forms a team with a proper role
distribution and players were permitted to change roles dur-
ing a period before the game started. Many games such as
DOTA2, Heroes of the Storm, Overwatch, Smite and others
have not adopted such an explicit role based mechanism. In-
stead, from what we have observed,these other MOBAs still
use a modified Elo based system. Champ Select’s explicit
method of role preference is an interesting contrast to our
own implicit method and is something that game develop-
ers should consider when designing matchmaking systems
for their specific game context.

10. CHALLENGES AND LIMITATIONS
Using a player’s champion mastery scores as a proxy for their
preferred role is not an ideal measure of role preference. As
a result, our algorithm would not consider if a player decides
to begin learning another role or if they play 2 or more roles
very proficiently. This can lead to our algorithm forming
teams where role conflicts may arise and that could result
in a poor player experience and reduced player satisfaction.
As mentioned in section 5, a sliding window approach may
be more suitable or another game specific measure of player
preference could be explored.

We rely on the game for the calculation of what role a player
assumed after a match is completed. The accuracy of this
in-game system calculation is worth future investigation -
should this calculation be incorrect, it could reduce the ac-
curacy of our analysis on player role preferences and if more
balanced teams win more often.

Our evaluation is not as robust as it could be due to several
factors that are difficult to account for. We form teams
at the same time, whereas on a real game server the player
pools would likely be fluctuating much more as players come
and go and games may form at very different times from one
another.

11. FUTURE WORK
One possible improvement over our approach is to consider
multiple roles as preferred roles for each player. That could
be done by either setting a fixed number of roles, or con-
sidering the entire role distribution to see which roles the
player prefers most. In the latter case, the likelihood of
being assigned a particular role would then depend on the
distribution.

Another possibility to improve our method or matchmaking
in general is to look at other game metrics. For example,
in League of Legends that could be the number of kills and
deaths, amount of damage dealt, or amount of gold 4 earned
and spent, etc. These metrics would be helpful at giving a

4In League of Legends gold is an in-game currency

better description of each individual’s and team’s perfor-
mance, rather than a binary win/loss variable. This could
also count towards role coverage; if a player showed good
performance at a particular role, perhaps the matchmak-
ing system could suggest the player try that role again by
matching them with appropriate teammates.

Looking at other datasets from other multiplayer competi-
tive team based games, such as DOTA2 or Overwatch, could
be beneficial in several ways. It would allow us to further
potentially show role preferences for players and that roles
matter when it comes to a team’s chances of winning. It
would also allow us to adapt our problem formulation and
algorithm to be more flexible in role coverage. An exam-
ple of this would be in the game Overwatch, where there is
typically multiples of the same role on a team vs League of
Legends where each role is assumed only once. Developing
a generalized framework to optimize for different specific
game contexts would most likely benefit new and existing
game developers when they look to change or develop new
games and/or matchmaking systems.

Lastly, future studies could involve partnering with actual
game developers to potentially evaluate modification of ex-
isting methods or developing new matchmaking systems on
public test servers involving real players and live matchmak-
ing.

12. CONCLUSIONS
In conclusion, we have shown that players do have pref-
erences for roles in League of Legends and that there is
a positive correlation between having a more diverse team
and winning the game. Our work offers a possible improve-
ment over current matchmaking systems by taking player
preferences into account. We formulate the problem as a
matchmaking with role coverage (MMRC) problem and have
shown that it is NP-hard. We also offer a greedy solution
to the MMRC problem that utilizes player in-game data to
form teams that implicitly lead players to play their pre-
ferred role. Ideally, our solution should lead to proper role
distribution within a team and therefore a more functional
team to compete with. We then evaluate our algorithm to
show that it forms more diverse teams without sacrificing
homogeneity in ranks. We hope to draw more attention to
the competing teams formation problem, since the popular-
ity, demand and revenue from MOBAs and eSports creates a
large opportunity on a little studied, challenging yet exciting
problem.
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[10] Mateusz Myślak and Dominik Deja. Developing Game-
Structure Sensitive Matchmaking System for Massive-
Multiplayer Online Games, pages 200–208. Springer In-
ternational Publishing, Cham, 2015.
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and Belén Dıaz-Agudo. Matchmaking and case-based
recommendations. In 19th International Conference on
Case Based Reasoning, 2011.

[12] N. Pobiedina, J. Neidhardt, M. d. C. Calatrava Moreno,
L. Grad-Gyenge, and H. Werthner. On successful team
formation: Statistical analysis of a multiplayer online
game. In 2013 IEEE 15th Conference on Business In-
formatics, pages 55–62, July 2013.

[13] N. Prakannoppakun and S. Sinthupinyo. Skill rating
method in multiplayer online battle arena. In 2016
8th International Conference on Electronics, Comput-
ers and Artificial Intelligence (ECAI), pages 1–6, June
2016.

[14] M. Claypool, J. Decelle, G. Hall, and L. O’Donnell.
Surrender at 20? matchmaking in league of legends.
In 2015 IEEE Games Entertainment Media Conference
(GEM), pages 1–4, Oct 2015.

[15] O. Delalleau, E. Contal, E. Thibodeau-Laufer, R. C.
Ferrari, Y. Bengio, and F. Zhang. Beyond skill rating:
Advanced matchmaking in ghost recon online. IEEE
Transactions on Computational Intelligence and AI in
Games, 4(3):167–177, Sept 2012.

[16] Zhengxing Chen, Su Xue, John Kolen, Navid Aghdaie,
Kazi A Zaman, Yizhou Sun, and Magy Seif El-Nasr.
Eomm: An engagement optimized matchmaking frame-
work. In Proceedings of the 26th International Confer-
ence on World Wide Web, pages 1143–1150. Interna-
tional World Wide Web Conferences Steering Commit-
tee, 2017.

[17] Theodoros Lappas, Kun Liu, and Evimaria Terzi. Find-
ing a team of experts in social networks. In Proceedings
of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 467–476.
ACM, 2009.

[18] Riot Games. Riot developer. https://developer.

riotgames.com/. Accessed: 2018-01-01.

[19] Riot Games. Research with riot. https://www.

riotgames.com/en/explore/research-with-riot.
Accessed: 2018-01-01.

[20] Riot Games. Riot api developer community. https://
discord.gg/uYW7qhP. Accessed: 2018-01-01.

[21] League of Legends Wiki. Elo rating system.
http://leagueoflegends.wikia.com/wiki/Elo_

rating_system. Accessed: 2018-01-01.

[22] Riot Games. Champion mastery. https://na.

leagueoflegends.com/en/page/features/champion-

mastery. Accessed: 2018-01-01.

[23] STATUS KWOH. Announcing team builder two-day
live beta! https://na.leagueoflegends.com/en/

news/game-updates/features/announcing-team-

builder-two-day-live-beta. Accessed: 2018-01-01.

[24] RIOT LYTE. New champ select replaces team builder.
https://na.leagueoflegends.com/en/news/game-

updates/features/new-champ-select-replaces-

team-builder. Accessed: 2018-01-01.

http://forums.na.leagueoflegends.com/board/showthread.php?t=12029
http://forums.na.leagueoflegends.com/board/showthread.php?t=12029
https://newzoo.com/insights/articles/esports-revenues-will-reach-696-million-in-2017/
https://newzoo.com/insights/articles/esports-revenues-will-reach-696-million-in-2017/
Report: The esports industry brought in $1.5 billion total revenue in 2017, on course to hit $2.3 billion by 2022
Report: The esports industry brought in $1.5 billion total revenue in 2017, on course to hit $2.3 billion by 2022
Report: The esports industry brought in $1.5 billion total revenue in 2017, on course to hit $2.3 billion by 2022
https://www.forbes.com/sites/insertcoin/2016/09/13/riot-games-reveals-league-of-legends-has-100-million-monthly-players/#583ab2365aa8
https://www.forbes.com/sites/insertcoin/2016/09/13/riot-games-reveals-league-of-legends-has-100-million-monthly-players/#583ab2365aa8
https://www.forbes.com/sites/insertcoin/2016/09/13/riot-games-reveals-league-of-legends-has-100-million-monthly-players/#583ab2365aa8
https://www.forbes.com/sites/insertcoin/2016/09/13/riot-games-reveals-league-of-legends-has-100-million-monthly-players/#583ab2365aa8
https://developer.riotgames.com/
https://developer.riotgames.com/
https://www.riotgames.com/en/explore/research-with-riot
https://www.riotgames.com/en/explore/research-with-riot
https://discord.gg/uYW7qhP
https://discord.gg/uYW7qhP
http://leagueoflegends.wikia.com/wiki/Elo_rating_system
http://leagueoflegends.wikia.com/wiki/Elo_rating_system
https://na.leagueoflegends.com/en/page/features/champion-mastery
https://na.leagueoflegends.com/en/page/features/champion-mastery
https://na.leagueoflegends.com/en/page/features/champion-mastery
https://na.leagueoflegends.com/en/news/game-updates/features/announcing-team-builder-two-day-live-beta
https://na.leagueoflegends.com/en/news/game-updates/features/announcing-team-builder-two-day-live-beta
https://na.leagueoflegends.com/en/news/game-updates/features/announcing-team-builder-two-day-live-beta
https://na.leagueoflegends.com/en/news/game-updates/features/new-champ-select-replaces-team-builder
https://na.leagueoflegends.com/en/news/game-updates/features/new-champ-select-replaces-team-builder
https://na.leagueoflegends.com/en/news/game-updates/features/new-champ-select-replaces-team-builder

	Introduction
	Motivation
	Related Work
	Data Gathering
	API Access
	Data Partner
	API Endpoints
	Data Storage

	Game Analysis
	Problem Definition
	Greedy Approach
	Complexity
	Greedy Algorithm

	Evaluation
	Discussion
	Challenges and Limitations
	Future Work
	Conclusions
	REFERENCES 

